Technique & Interpretation

Sensitivity Study

A monoclonal component is diluted with normal serum and analyzed on both Hydragel and Capillarys.

The lowest concentration detected is **0,18 g/L** on both systems.

Sensitivity Study

A monoclonal component is diluted with normal serum and analyzed on both Hydragel and Capillarys.

The lowest concentration detected is **0,4 g/L** on both systems.

Sensitivity depend of the monoclonal component mobility and also of the polyclonal background

Comparative Study Hydragel to Capillarys

- ➤ Correlations were performed on 1064 samples containing at least one monoclonal component.
- > Samples were run in parallel on Capillarys and Agarose gel

	CAPILLARYS	HYDRAGEL		
Positives	99.4% (1058)	98.4% (1047)		
Negatives	0.6% (6)	1.6% (17)		

HYDRAGEL PROTEIN(E) 15/30

sebia

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Interpreting an agarose gel is like visualizing a topographic map and trying to estimate the moutain relief

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Fraction identification

ALBUMIN

 Most abundant protein in normal serum

- Migrates anodally
- Functions:
 - Maintains oncotic pressure within the body
 - General transport protein
 - Source of amino acids
- Normal Range: 3.8 to 4.8 g/dL

ALBUMIN

- Hypoalbuminemia
 - Liver disease
 - Malnutrition
 - Protein loss (urine, GI tract, burns, neoplasia)
- Hyperalbuminemia
 - Normal healthy variation
 - Dehydration is the only pathological association
- Bisalbuminemia
 - Congenital
 - Induced by drugs
 - In acute pancreatitis

ALPHA-1 FRACTION

α-1 ACID GLYCOPROTEIN

- Alpha-1 acid glycoprotein (AGP) or orosomucoid (ORM)
 - 41-43 kDa glycoprotein
 - pl of 2.8-3.8
 - AGP is one of the major acute phase proteins
 - Serum concentration increases in response to systemic tissue injury, inflammation or infection

ALPHA-1 FRACTION

α-1 ANTITRYPSIN

- Alpha-1 antitrypsin (or alpha-1 protease inhibitor):
 - plasma protein (an $\alpha 1$ -globulin, 53 kDa) produced primarily in the liver
 - an acute phase reactant
 - inhibits the activity of elastase, cathepsin G, trypsin and other proteolytic enzymes
 - deficiency of this protein is associated with development of emphysema

ALPHA-2 FRACTION

- Normally appears as single peak cathodic to (before) alpha-1 fraction
- Several proteins migrate together:
 - Haptoglobin (double band may be indicator of phenotype)
 - Alpha-2 macroglobulin
 - Ceruloplasmin and Gc globulin are minor components
- Decreased alpha-2 values are due to hemolysis (intravascular)
- Increased alpha-2 values are due to:
 - Acute inflammation
 - Nephrotic syndrome
 - In hemolysed samples (in vitro)

ALPHA-2 FRACTION

α-2 MACROGLOBULIN

- Protease inhibitor
- Concentration range: 150 -- 350 mg/dl
- Alpha-2 macroglobulin is not eliminated through kidney due to its huge size and may increase 10 fold in nephrosis (secondary to synthesis)
- No specific disease states are associated with low levels
- Mobility may change with storage

ALPHA-2 FRACTION

HAPTOGLOBIN

- Haptoglobin (HAP) binds free oxyhemoglobin in plasma and makes a complex with hemoglobin molecule
- Functions:
 - Acute phase protein -- elevated in inflammation
 - Carry Hb in case of hemolyse
- Increased in hypoproliferative anemia, including iron deficiency and in hemolysis in vitro
- Decreased in intravascular hemolysis, hemolytic anemia, transfusion reaction, malaria

Alpha 2 Zone

Haptoglobin phenotyping I – I

2 distinctive bands in Alpha 2

Alpha 2 Zone

Haptoglobin Phenotyping I - II

2 close bands in Alpha 2

Alpha 2 Zone

Haptoglobin Phenotyping II - II

Only 1 band in Alpha 2

BETA-1 FRACTION

TRANSFERRIN

- Transferrin (TRF) is the principle protein for iron transport
- Mainly synthesized in the liver
- Transferrin binds iron released from catabolism of hemoglobin or absorbed from the intestine, and carries it to iron storage sites
- Increased in:
 - Iron deficiency anemia
- Decreased in:
 - Iron overload
 - Acute or chronic inflammation

BETA-2 FRACTION

C3 COMPLEMENT

 Complement = system of ~30 proteins that serve as mediators of the inflammatory response

Decreased:

- > 3 day old sample
- Increased:
 - acute phase response or co-migrating MC band
- Normal Range: 2.0 5.4% of TP

BETA-2 FRACTION

C-REACTIVE PROTEIN (CRP)

- M.W. 120 kDa
- Clinical significance: acute phase protein
- High levels of CRP are caused by infections and many long-term diseases
- May be mistaken for a monoclonal band

GAMMA FRACTION

- Immunoglobulins migrate within the gamma fraction
- IgG, IgA, IgM, IgD, IgE, Kappa, Lambda
- IgA: migrates closest to the Beta-2 fraction

Decreased:

In elderly

congenital immunodeficiency

Immunosuppressive treatment (HIV ,Transplant etc..)

Increased:

in lymphoplasmocytic syndromes such as Multiple Myeloma

Hyperimmunization

Acute infection (HIV....)

Chronic Liver disease

Chronic inflammatory disease

Multiple Pathologies screening	TP, g/dL	Alb		α-1	α-2	β	Split β	β-γ bridge	γ
Acute inflammatory pattern and Hyper-estrogenism pattern		7		7	7				
Chronic inflammatory disorders		7		7	7				7
Polyclonal gammopathy					+/-	+/-			7
Liver disease/Cirrhosis		7						+/-	7
Nephrotic syndrome	7	7		+/-	7	7	+/-		7
Protein-losing pattern/malnutrition	7	7		7	7	7			7
Autoimmune reactions				7	7				7
Alpha-1-antitrypsin deficiency				K					
Hypogammaglobulinemia	7				^				KK
Hemolytic anemias/congenital hemoglobin defects			- And -	/	7		$ \wedge $		

Picking-up monoclonal protein by serum protein electrophoresis

Normal serum

Serum with Monoclonal Protein

- Paraprotein
- ➤ M-protein
- ➤ M-spike
- ➤ M-component

Serum Protein Electrophoresis by

- ✓ Complete walk-away automation
- ✓ Direct Protein measurement
- ✓ Optimal resolution
- ✓ Excellent sensitivity
- ✓ True positive sample ID
- √ High throughput
- ✓ Large autonomy

